
length. Taking into account the additional internal energy relaxation mechanism leads to 
a decreas]e in the binding coefficient and an increase in the shear angle in comparison with 
the model of generalized thermomechanics. With a decrease in the internal energy relaxation 
time, the binding coefficient decreases and the shear angle increases. The difference in 
the binding coefficient may be observed for $ > 1.0 while the difference in the shear angle 
may be observed for $ > 0.i. 

Thus, taking thermal memory into account is similar to taking relaxation of thermal 
flow into account [5] and taking rate of change of temperature into account [6], necessary 
for large frequencies or for small wavelengths. The relations we have obtained for veloci- 
ties and damping of thermoelastic waves may find application in the experimental verifica- 
tion of thermoelastic models for the establishment of explicit expressions for heat flow and 
internal energy relaxation functions. 

NOTATION 

z, coordinate; t, time; ~, temperature; ~(t), thermal flow relaxation function; ~(t), 
internal energy relaxation function; ~(t), function of temperature relaxation of stresses; 
Cv, volumetric heat capacity; Ki, linearization coefficients; p, density; u, displacement; 
~, wave frequency; e, binding (compendency) coefficient; ~q, thermal flow relaxation time; 
Te, internal energy relaxation time; To, time of temperature relaxation of stresses; ~, 
thermal conductivity; N, wavelength. 
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SELF-SIMILAR SOLUTION OF THE PROBLEM OF CONSOLIDATION 

AND THAWING OF FROZEN SOIL 

A. F. Klement'ev and E. A. Klement'eva UDC 624.139.264:536.42 

The article presents a new mathematical model of the process of thawing of 
frozen soil taking consolidation into account. The following solutions were ob- 
tained: the self-similar one for the unidimensional biphase problem and an ap- 
proximate analytical one for the simplified single-phase problem. 

In the calculation of engineering structures erected in soil massif that thaws under 
their thermal effect, it is usual to take into account the thermal regime of the buildings 
and the position of the boundary between thawed and frozen zones of the accommodating soil 
in dependence on time [1-3]. Thus it is implicitly assumed that the heat source is the en- 
gineering structure and that it is fixed. In reality, however, there occurs filtering con- 
solidation of the thawing soil; as a result the heat source moves according to the law of 
increasing subsidence [4] which takes into account the variable thickness of the consolidat- 
ing soil layer. 
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Thus, for the adequate prediction of thermal interaction of engineering structures with 
the thawing soil it is indispensable to solve the joint problem of consolidation and thawing 
of the soil. 

To obtain the self-similar solution, we will examine the following simple mathematical 
model of this process. 

Filtering consolidation of homogeneous thawing soil in the unidimensional case is de- 
scribed by the boundary-value problem: 

Op 

Ot 
-----c Ozp,. s ( t )<z<~( t ) ,  0 < t ~ < t f ;  ( 1 )  

OZ2 ' 

p = o, z = s(t); ( 2 )  

(Po-- P) d~ ap = c  , z---- ~(t); (3) 
dt Oz 

P=Po, s----O, t = O .  ( 4 )  

The subsidence of the thawing soil is found from the equation 

~(t) 
s (t) = ao S (Po - -  P) dz + A~ (t). 

s(t) 
(5) 

The position of the boundary between the thawed and frozen zones is determined from the 
solution of Stefan's biphase problem for homogeneous soil with a view to the movement of the 
heat source: 

OTIot = a~ --O2T~ozz ' s ( t ) <  z < ~ ( t ) ,  0<t<tf; ( 6 )  

OTo_Ot =a~ 02T20z z , ~ ( t ) . < z < o o ,  0 < t < t f ;  (6.1) 

T1 = Tb z = s(/); ( 7 )  

T I = T o . = T  m z= :~ ( t ) ;  ( 8 )  

or~ ~ or.. Q , z = ~ (t); (9) 
Oz Oz 

T2 = Tpf z - + o o ;  ( 1 0 )  

r l  = Trfl ~ = 0 ,  t = O .  (ii) 

The self-similar solution of the joint problem of consolidation and thawing of frozen 
soil has the form 

(z) p---- Aoerf 2 ]/c-T + B o ,  ( 1 2 )  

Ts= A~erf ( z ) 2asV ~_ +B~,  s =  1, 2. (13)  

The regularities of subsidence of thawing soil and of the movement of the interface between 
the thawed and frozen zones are described by the expressions 

s (/) = ~}/T, (14) 

~(t)==I/T, (15) 
The coefficients ~, ~ have to be determined. It is known that these regularities are con- 
firmed with fairly high accuracy by experimental data [5]. 

The constants A0, B 0, A s , B s (s = I, 2) are determined from the boundary conditions: 

Ao = Po , B o =  p ~  ,. (16) 
P (~3) - - e f t  ~a P (~3) -- err ~8 
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A~ = Tb - T i n _ _ ,  BI = Tn e r f ~ l - - % e r f % . ,  (17)  
err 81  - -  err % e"f 81 - -  erf ~, 

A ~  Tpf - -7ha ,  B 2 =  7~n--Tpferf~o , (18)  
erfc % erfc ~. 

exp (--  e~) 
where  ~ -  ~/2a~, s =  1, 2; % = ~ / 2 3 / ~ ,  ~ 1 ~ / 2 a l ,  ~ 3 - - 8 / 2 3 / ~ ,  P ( % ) = e r f a n  

The coefficients ~, ~ are determined from the following system of nonlinear equations: 

~3 = aoPo~3P (~) + A%, ( 19 ) 
P (%) - -  erf ~3 

Zl exp ( - -  =~) @ exp ( - -  a~) 3 / ~  %) al e r f % - - e r f ~ l  (T m - T p f ) _  • erfc=2 -- 2 Q =" (20)  

When we solve these equations jointly, it is not difficult in principle to find these 
coefficients and to determine from them the subsidence of the foundation of the building, 
the position of the interface between the thawed and the frozen zones, and also the vertical 
distribution of temperature and pore pressures at a specified instant. 

However, in practical calculations it becomes necessary to use a computer for solving 
the system of nonlinear equations (19), (20). It is therefore of considerable interest to 
obtain approximate solutions not requiring the use of a computer, even if it is only for the 
simplified problem of consolidation and thawing of soils. 

We will assume, as is usually done in the theory of filtering consolidation [4], that 
Eq. (I) may be dealt with in the region 0 < z < $(t), the boundary condition (2) for z = 0, 
and in the calculation of subsidence by formula (4) the lower limit of integration may be 
taken equal to zero. Then, in accordance with (16), we find 

Ao = Po , B o = O. (21)  
P (~) 

We will determine the position of the interface between the thawed and frozen zones 
from Stefan's single-phase problem for homogeneous soil, with the movement of the heat 
source taken into account. In doing that, we determine the constants At, B I by formulas 
(17). The system of equations (19), (20) becomes considerably simplified and assumes the 
form 

= aopo -t- Aaa, (22)  
P (a.) 

( r  b _ Tm) %1 exp (--  cz~) - ] /~- Q r (23)  
al err % - -  erf 81 2 ' 

where  t h e  e x p e r i m e n t a l l y  o b t a i n e d  [5] v a l u e s  o f  t h e  t h e r m o p h y s i c a l  and d e f o r m a t i o n  param- 
2 . . . . . .  e t e r s  exp ( - ~ )  and e r f  ~1 can be r e p l a c e d  wath  an a c c u r a c y  s u f f l c a e n t  f o r  e n g a n e e r a n g  a p p l l -  

2 ' . ~ . , c a t i o n  by 1 - a  s and 1.4T~-6~ l ,  r e s p e c t i v e l y .  Then,  a f t e r  s u b s t l t u t a n g  (22)  an to  ( 2 3 ) ,  we 
o b t a i n  t h e  b i q u a d r a t i c  e q u a t i o n  w i t h  r e s p e c t  t o  ~ :  

b~ [1 ~- (1 - -  A) C1] ~ ~- [1 - -  bl q- (1 - -  aop, - -  A) C1] ~ - -  1 = 0, (24)  

where 

bl = 0.9896a~/c, CI = Qa~ ]/1.26~/(%1Tb). 

There is no difficulty in solving this equation. From the calculated value of ~i we 
can easily determine the subsidence of the foundation of the building, the position of the 
interface between the thawed and frozen zones, and also the vertical distribution of tempera- 
tures and pore pressures at a specified instant. 

A comparison with the results of physical modeling showed that the suggested method is 
fairly effective in the case of "warm" permafrost. The mean error in predicting the posi- 
tion of the interface between the thawed and frozen zones for different soils over a period 
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of i-i0 years amounted to 20.9%. The use of the method of the All-Union Research Institute 
of Pipeline Construction (VNIIST) yielded an error of 31.6%, and the method of the All-Union 
Research Institute of the Gas Industry (VNIIGaz) an error of 39.6%. 

NOTATION 

z, depth; t, time; tf, final time; p, excess pore pressure; c, coefficient of consolida- 
tion; s, subsidence; g, depth of thawing; P0, external load; a0, coefficient of relative 
compressibility; A, coefficient of thawing; TI, T2, temperature of thawed and frozen soil, 
respectively; Tb, Tm, Tpf, temperature of the foundation of the building, melting point, tem- 

2 62 perature of the permafrost, respectively; al, 2' thermal diffusivity of thawed and frozen 
soil, respectively; %1, %2, thermal conductivity of thawed and frozen soil, respectively; 
Q, heat of phase transition. 
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